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Abstract

It is well-known that predictions about individuals from st atistical data about the pop-
ulation are in general unreliable. However, the size of the ppblem is not commonly re-
alised, and predictions about individuals are in practice ften made. For a number of ways
of predicting information about one variable from another with which it is correlated, we
compute the reliability of such predictions, given the corelation.

Assuming a bivariate normal distribution, we demonstrate tat unless the correlation
is at least 0.99, not even the sign of a variable can be preded with 95% reliability in an
individual case. The other prediction methods we considera no better. We do not expect
our results to be substantially different for other distrib utions or statistical analyses.

Correlations as high as 0.99 are almost unheard of in areas vene correlations are
routinely calculated. Where reliable prediction of one vaiiable from another is required,
measurement of correlations is irrelevant, except to show ken it cannot be done.

An empirical study of correlations reported in the sociddagliterature ((McP71]) found that
only 1% of the correlations reported in the papers studiegtwwger 0.4, and only two out of
281 correlations exceeded 0.6. In that area, a correlafi@8as generally considered high,
and a correlation of 0.2 is publishable as demonstratingha@ction between two variables.

We consider the question of what such correlations implytffier task of reliably and/or
accurately predicting the value of one variable from theentkVe demonstrate that it is impos-
sible to reliably estimate even the sign of the variabletraddo its mean unless the correlation
is at least 0.99. For lesser correlations, such a prediatibbdo better than chance on average,
and for some purposes, this is all that is required. Howestarh correlations are useless for
making reliable predictions in individual cases. Coriielas of this level are virtually unheard
of in almost every discipline where statistical methodscam@amonly employed.



Despite this, a frequent use of statistical trends is to npakeictions about individuals.
Aptitude tests and credit rating are two major applicati@specially in the latter case if ratings
are derived from rules generated from statistical analygidata mining applications. An indi-
vidual to whom such tests are applied is, in effect, parditigg in a lottery. If the test is valid,
the lottery is biased to a greater or lesser extent in hisuigMaut it is a lottery nonetheless.
Such tests say little about any individual being testedt How little, it is the purpose of this
paper to demonstrate.

We are not suggesting an alternative to such assessmenasethr suggesting that they
not be used. We are demonstrating what they can and cannot do.

We use the bivariate normal distribution as a case studgidenseveral different methods
of gaining information about one variable from the othed aneach case calculate the relia-
bility of the predictions given the correlation coefficie/e briefly consider the problems of
multivariate analysis and estimation of unknown correlasi

We do not expect our conclusions to differ substantiallyditrer distributions or statistical
analyses. Only standard mathematical statistical theorgquired. See [KSO87] as a general
reference.

The bivariate normal distribution

We recall for reference some basic data about the bivar@taal distribution. This distribu-
tion over two random but correlated real variab¥esndY whose means are both 0 has the
probability density function:
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where—1< c< 1andc =1/v/1—c? ais the standard deviation &f, given thaty =y. (This
is independent of.) We shall call this theonditional standard deviatioaf X. b is similarly
the standard deviation of, given a fixed valuX = x. c is the product-moment correlation
coefficient ofX andyY.

The conditional distribution aX, given that the value of isy, is a normal distribution with
meanacy/b and standard deviatian

If Y is unknown, the distribution oX is a normal distribution with mean 0 and standard
deviationac. We termac the unconditional standard deviatioaf X. Similarly, bc is the
unconditional standard deviation 6f

To visualiseP(x,y,a,b,c), it is helpful to look at its contour lines. These are the figrof

eIIipses;‘?2 + bé — Zg—ﬁy = constant. Sinca andb are just scaling factors, we take them to be

1. The axes of the ellipses are the lines +y, and they intersect the coordinate axes-&t
for anyk. Whenc = 0 they are circles, and for positivethey are elongated along the line

x =Y. The ratio of the axes iﬁ/%:- Figure 2 illustrates this for selected valuescofThis

gives an immediate feel for how useful a correlation is faineatingY, given the value oK.
A scatterplot of data drawn from these distributions wiN@aoughly the shape of the ellipses.
Figure 3 shows such plots for 100 random points chosen frensdme distributions.



A correlation of 0.99 is about the point at which the data begiresemble a straight line
rather than a cloud. The slanting line in each figure is theegjon line ofY againstX. It
passes through the origin and the points where the ellipsa artical tangent. Its gradient is
c. This line represents the maximum likelihood estimat pfiiven X. Notice that it differs
from the maximum likelihood estimate &, givenY, which is a line through the origin of
gradient ¥ c, meeting the ellipse at its horizontal tangents.

We will also use the probability distribution function otlunivariate) normal distribution,

D(x) = L X e%/2dx This is the distribution function for mean 0 and standardatéon
V2n

1; for the general case of meprand standard deviatiamwe define®,, s(x) = ®((x—)/0).
As the values we require df(x) sometimes go far beyond the range of standard statistical
tables, we have calculated them ourselves from formula@@ (for small|x|) and 7.1.13 (for

large|x|) from [AS64], for the related error function ¢xj = %Tfo edx

Analysis of variance

The functionf for which the liney = f(x) best fits the probability distribution, in the sense of
minimising the expected squared error, is the straightjiaecx which was plotted in Figure 2.
The proportion of the variation of which is “explained” by this estimate (in the technical
sense which the theory of analysis of variance assigns $ovibid) isc®>. The remaining,
“unexplained” proportion is & c2. The latter quantity is called theefficient of alienatiowr
dissociation or more colloquially theoefficient of uselessnesghe second and third columns
of Table 1 tabulate these quantities for various values of

Note that correlation does not imply causality. It does wdibfv merely from an analysis
of variance of this sort that either variable has any caudliénce on the other.

Improvement ratios

A further feeling for what the correlation coefficient meara be gained by considering the
ratio of the standard deviation ¥fto the standard deviation 8fgiven X, when the correlation
is c. This ratio isc’ (independent oK, a, andb). Call this theimprovemenbf our knowledge
of Y. This is a real number greater than or equal to 1. 1 means nmuament, 10 means that
knowing X reduces the standard deviationYoby a factor of 10, etc. The fourth column of
Table 1 shows the improvement ratio for various correlaion

Mutual information

For two jointly distributed random variables andY, the mutual information betweex and

Y is the maximum amount of information about either variablgol can be obtained from
knowing the exact value of the other. It is denoted gy and is measured in bits. For a joint
normal distribution with correlatioe, Ixy = logc’. This is tabulated in the fifth column of
Table 1.



It is illuminating to consider some examples. Suppose weireghat knowing the value
of Y should give 1 bit of information abo. Then logt” must be 1, which implies = 0.866.
Suppose we require to predicto within 1 partinN. Thenlyy =log, N, andc= /1 — 1/N2.

If N is at least 5, then this is well estimated by 1/2N2.

TakingN = 10 — one decimal digit of accuracy — gives= 0.995. To obtain two decimal
digits accuracy requires= 0.99995. Clearly, when obtaining results of such accuracg, on
does not trouble to measure correlation coefficients atTdle variables being measured are
obviously correlated, and one is more likely to concern etiegith the precise form of their
relationship and the mechanism which produces it.

Now consider correlations such as are commonly reportedaitistcal studies, such as
those examined in [McP71]. For example, suppose studies gt between 40% and 80%
of the variation in some variabM is explained by variation iX, i.e. the correlatiort is in
the range,/(0.4) to 1/(0.8), that is, 063 to 089. Thenc' is in the range 29 to 224, and
the mutual information is between3b and 116. That is, knowing everything abodt for
an individual gives somewhere between one-third of a bitjastover one bit of information
about that individual'y.

The caution is often made that such correlations do not wadi@awing conclusions about
individuals. However, every time a statistically validatest is used to make a decision about
an individual either one is drawing such a conclusion, orisirdifferent to the accuracy of the
decision with regard to the specific individual, for the sameason that a casino is indifferent
to the outcome of any particular bet. This issue arises nigtfonthe correlation between the
thing being tested for and the thing being predicted, but faisthe correlation between the test
score and the entity the test is intended to measure. We lmagkarnative to suggest; we are
simply pointing out the scale of the problem.

Far lower correlations than®9 are often published. The previously cited survey ((MdpP71
found that only 1% of the correlations reported were ovdr Borresponding to a mutual in-
formation of 0125. For practical purposes, this is no information at athi& individual case.
Yet because a sufficient quantity of data has been amassesl statistically sure at a high
confidence level that the correlation differs from 0, sucksult can be published and claimed
to demonstrate a connection between two variables, wherattipe it demonstrates a lack of
connection.

Practical predictions

The mutual information is the maximum amount of informatibat could possibly be obtained
aboutY by knowingX. It does not give any method for actually extracting that mimdorma-
tion, and in general it may not be possible. We consider s gbction three practical methods
of attempting to estimate from X. For simplicity, we take the means ®fandY to be zero,
and the conditional standard deviatianandb to be 1. We also assume thais non-negative.

Sign estimation

Suppose we attempt to predict just one bit of informationalogivenX, one yes-no decision:
whetherY is positive. If the correlation is positive then the best wa do is to estimate the sign



of Y by that ofX. What proportion of correct predictions will we make ové&alhe formula
for this is £ cos™}(—c), tabulated in the second column of Table 2.

At a correlation of 06, classification is correct/3 of the time, compared with the 50%
that would be obtained by blind guessing. There is no wayltavteich 1/3 of the decisions
are the incorrect ones..®correlation gives four out of five correct, not good odds wttee
decision is of any importance to the individual. If the indival demands that the same standard
of confidence apply to his case as are commonly used in thetubeteof statistical trends,
i.e. 95% or 99% confidence of receiving a correct decisioan tthe required correlation is
0.988 or 0.9995 respectively.

The task of sign estimation assumes that one knows the méahamdY. We can devise
a similar task which does not depend on this information.e@itwvo random individuals, we
can estimate which has the higher valueyddy seeing which has the higher valuexofThe
proportion of correct decisions turns out to be the same agtbbability that for a single
individual,y has the same sign aswhich we have just computed.

Screening tests

Although, as we mentioned above, we cannot tell which of tieeligtions ofY from X are the
correct ones, we can be more confident of those where the mdgmfX is large. We therefore
pose the questions: How large must the magnitud¢ bé, for the estimate of the sign ¥fto
be correct at least 4 € of the time? And for what proportion of the population doéesave
such a magnitude? To the first question, the answer igxh@ust be at leasi= 2d-1(1—¢).
To the second, the answerSg&, ) = 2(1— ®(d/c’)). Sis tabulated for various values oand
for e = 5% and 1% in the third and fourth columns of Table 2.

A correlation of 0.2 is clearly useless. To give concrete mrgato just how useless it is,
suppose that such a test were being applied to the entirerhpoyulation of the world (cur-
rently about 6 10° people). There is only about one chance in 200,000ahgbnewould be
reliably classified at the 5% level. At the 1% level, the piloibly of a given individual being
reliably classified is 1 in 3 x 10?°. The latter number is the number of atoms in about 2.5
tons of water. (These extreme figures must be taken with somenon sense. In practice, no
real distribution can even be observed at such a large distiiom the mean, let alone mea-
sured. Nevertheless, for any distribution with rapidlymesing tails, the qualitative conclusion
holds.)

At a correlation of 0.5, fewer than 5 in 1000 of the populatioa reliably classified. This
is still useless. A correlation of 0.9 reliably classifiesdehan half the population at the 5%
confidence level. Only at a correlation of 0.99 does it begibé useful — four fifths of the
population are reliably classified at the 5% confidence |ared nearly three quarters at the 1%
confidence level.

If an individual requires a 95% chance of receiving a préalicthat has a 95% chance of
being correct, the correlation must be over 0.99995, and 88% chance of receiving a predic-
tion that is 99% likely to be accurate, the required correfawvill be in practice unmeasurably
close to 1.

If Y is impossible to measure at the time when a prediction ofdtseris required, then
with a correlation of less than 0.99 one must either make roangliable predictions, or refuse
to make predictions in many cases. YIfcan be measured, then we can predict it fr&m



when|X| > 8, and measur¥ in the remaining cases. This is useful whéis more difficult or
expensive to measure th&n That is, the measurementXfis used as a screening test. Whether
this is worth doing depends on the relative cost of the twosuesaments and the proportion of
the population which is reliably classified by the measumemoé X. If a direct measurement
of Y costskK times as much as a measuremenKothen using the screening test will give a
relative saving of§(c,€) — 1/K over the cost of measuringin every case. For this to be an
improvement requirek > 1/5(c,€). The maximum possible cost saving, in the limit where
testingX is free, isS. At a correlation of 0.9, the cost ratio is 2.3, and the cogingacan be at
most 42.6%.

Only at a correlation of 0.99 does it begin to be useful — foftihgi of the population can
be given just the simple test at the 5% confidence level, aadynéaree quarters at the 1% con-
fidence level. The break-even point for costs is a ratio obt 2.33 respectively. Nevertheless,
it must not be forgotten that if a screening test is only aa®uat the 1% confidence level, then
about 1% of those it is given will be misclassified. What proportion of misclassifications is
acceptable depends on the purpose of the test and on thetionignich it is being used.

As for the case of sign estimation, we can devise a versiomeo$treening test which does
not require knowing the mean &f. Given a correlatior, and two random samplés,y) and
(X,y), suppose we predict thgt> yif X — x is at least a certain amoudit How large should
4 be to ensure that when we make this prediction, we can haeastt & certain confidence in
it, and given the confidence we require, what proportion afpaf random samples allow such
a prediction to be made? As for simple sign estimation, thidblem reduces by a change of
variables to the screening problem we have just studiedttensame figures apply.

Decile estimation

Just as a correlation sufficient to give one bit of mutualiinfation is not enough to perform
reliable sign estimation, so a correlation giving one detidigit’s worth of information is not
enough to reliably estimate the magnitude of the dependgighie with that accuracy.

If we usebcx/a to estimatey, we can ask the question, how likely is it for a random data
point(x,y), thatbcx/a andy differ by no more than half a decile either way of the uncandil
distribution ofY? The probability isf,— ", ®cx1(Y1) — Pex1(Yo) Whereyo = qbaé(tbo’d(cx) -
a/2),y1= CD&%,(CDO,d (cx)+0a/2), anda = 0.1. This is tabulated in Table 3. For an estimate to
this accuracy to be wrong in no more than 5% of cases requiteselation of at least 0.997.

Comparison between correlation and measurement

If one wishes to know the value of some variallethe obvious thing to do is to measure it.
WhenX cannot be directly measured, one may instead be able to neessuething correlated
with it, and use that to estima¥. Here we shall compare the efficacy of the two approaches.
Suppose that we have a method of measuXnghich is, however, subject to some error. For
simplicity of the example, we shall suppose tiais normalised to have mean 0 and standard
deviation 1, and that we can exactly measure some quantitych thaty = X + Dj, where

D, is a normally distributed random variable independerX efhose mean is zero and whose
standard deviation is.0. Y is, roughly speaking, a measurement whose error is aboutdf0%
the spread of values af—not a very good one.



Suppose that someone else finds a varial@ving a correlation of @ with X. This is a
fairly high correlation, by the standards usually applidtew correlations are being computed.
We shall assume that the underlying reality is that X + D, whereD is a random variable
independent oK andD;.

In general, the correlation betweéhand X + D is ¢ = 1/v/1+d?, where the standard
deviation ofD is d. The mutual information is log/1+ 1/d2. Letd; andd; be the standard
deviations ofD; andD», andc; andc; be the correlations of andZ with X. We are given
thatd; = 0.1 andc, = 0.8, thereforec; = 0.99504 andd, = 0.75. The mutual informations
arel; = 3.329 andl, = 0.737. Thus the “poor” measurement yields more than four tieees
much information as the “good” correlation. Suppose we fomth sources of information to
make an even better estimateXaf The standard deviation of conditional on knowing botk

andZisc¢® = /14 1/d?+ 1/d2. The resulting mutual information Ig = log,c’®. This gives
I3 =3.3417. Thus the extra information gained fr@ngivenY, is a mere 13 bits.

For a more typical correlation of 0.6 betweémandZ, the figures ardy, = 1.333,1, = 0.322,
I3 =3.333, andiz — 11 = 0.004. If the measuremeittis to two significant figures instead of
one, we have; = 0.99995,1; = 6.644, and the extra information frodis 0.00004 bits.

Accuracy of the sample correlation coefficient

So far, we have considered the correlation coefficient optipulation to be given. In practice,
it is estimated from a sample, and there will be some uncdytan the estimate. The smaller
the sample, the larger the uncertainty.

To make this estimate, it is not sufficient to merely estéltst the sample correlation and
the sample size imply that the population correlation is/Vikely to be positive. As we have
seen, the mere knowledge that a correlation is positive doesnply any useful relationship
between the variables. We must obtain a numerical estinfateeaninimum likely value of
the population correlation. (Usually, one will not be comes to place an upper bound on the
correlation — the higher the correlation, the better.)

To do this, we need to know the distribution of the sampleealation, given the population
correlation and the sample size. For the bivariate nornstidution, this may be accurately
estimated via Fisher'gtransformation ([KSO87, §16.33], [Wil62, p. 594]). Foraficiently
large sample size, a sample correlatiory and a population correlatign letz= 3 log }%g and

(= % Iog%g. Then(z— ¢)v/n—1is very close to being normally distributed with mean 0 and
standard deviation 1.

From this result we can calculate a confidence bound for amat of population correla-
tion. If we observe a positive sample correlatmim a sample of siza, for what valuep can
we conclude with confidence that the population correlagat leasp? Table 4 tabulates this
for sample sizes of 100 and 20 and confidence levels of 95% 2¥td 9

To be sure at the 5% confidence level that the population ledioe is at least, say, 0.866
(giving exactly one bit of mutual information between theighles), the correlation observed
for a sample of 100 must be at least 0.9. If the sample sizelys2ih one needs to observe a
sample correlation of at least 0.935. At the 1% confidenad biae sample correlation needs to
be even higher: 0.914 and 0.952 respectively.



At lower correlations the difference between sample cati@h and minimum likely pop-
ulation correlation is even larger. If one is interestedmioking with 95% confidence that the
population correlation is at least 0.2, a sample of 20 musgildy a correlation of at least 0.52
to allow this inference to be drawn.

The relation between population, sample correlation, amdidence level can be looked at
in another way. If one desires to detect at confidence ketret the population correlation is at
leastc, then if the population correlation is actually ordythe probability that one’s test will
detect it is onlye.

Relationships for populations and individuals

Suppose that the bivariate data arise from taking some nuofhbedividuals, and obtaining
from each individual some number of paipsy). The set of all the data will have a certain
correlationc betweerx andy. The set of data from thi¢h individual will have a correlation;.
What relation may hold betweeanand the individuat;? What relation may hold between the
regression line for the whole data and the regression limeisdlividuals?

No relation need hold at all. To visualise why this is, imagihe scatterplot of the whole
set of data. It is positive, this will have the general shape of an oval indyelane whose long
axis has positive gradient, as in Figure 2. Each individugdita will consist of some subset of
those points. Clearly, it is possible to cover the oval witiafler ovals whose eccentricities and
long axis directions bear no relationship to each othermthiase properties of the whole oval.

This has nothing to do with the particular distribution, dthnc as the statistic; clearly, the
same situation obtains for any statistic calculated from@opulation distribution other than
highly degenerate ones, such as a population of identi¢alptants.

The moral of this is that no argument can be made from a ralstip between variables
shown by a population, and the relationship between therarfgrindividual. The population
relationship is a property only of the population, and notan§ individual in it; excluding
degenerate caseamyrelationship between the population variables is consistéh anyindi-
vidual relationship, oanycombination of individual relationships. See [Pow90] faimulated
example in which the correlation between an independeigiMarand a dependent variable had,
for every individual in a population, a sign opposite to thathe correlation over the whole
population.

If enough data points are taken for each individual to egtntlae relationship between
X andY for an individual, then the group statistics are irrelevianthat task. If not enough
data points have been taken, the task is impossible, and g gtatistics are still irrelevant.
In many situations, only one data poif}y) is measured per individual. This is the case,
for example, in most data collected from surveys. It is aldwerent in the nature of some
experiments, especially in the area of learning. It is natsjide to predict from such a data set
whaty would have been for a given individuabifhad been different. However, it is easier to
overlook the error, since an actual distribution of datarftbat individual is not available as a
standard to compare with the prediction.



Predictions for non-random subpopulations

The preceding section assumes that the quantity of data &r@mngle individual is a small
proportion of the whole data set. For larger non-random spblations, it is possible to say
something about the relationship between population abdauulation statistics, but not very
much. For bivariate normal correlations we shall ask: gizgropulation correlation af, and
a subpopulation containing a proportiarof the whole, what lower bound can be placed on
the subpopulation correlatian? We give a simple analysis based on the pictures of Figure 2,
which will place an upper bound on this lower bound. That is, shall exhibit a particular
subpopulation designed to have a low In general it will not be the lowest possible.

If we inscribe the largest possible circle inside an eltipticontour, this represents a contour
for a subpopulation with a bivariate normal distributiorttweorrelation zero. The relative size
of that subpopulation is the ratio of the areas of the cirolé the ellipse, which is the ratio of

the minor and major axes of the ellipses. ThiViﬁ. More generally, consider a population
with a correlation ofc, and a subpopulation with the same means, and a correlation o
Givencandc; < ¢, how large can the subpopulation be, assuming both are&igbrnormally

distributed? This is the same as asking for the largest Iplesslative area of a contour ellipse

for correlationc; contained in one having correlatian and isk = % If ¢ and

K are given, this formula gives an upper bound on the minimussibte correlatiorc; of a
subpopulation of relative sizein a population of size. This is tabulated in Table 5 for several
values ofc and a range of subpopulation sizes.

For a subpopulation of half the total population, if the plagion correlation is 0.95, the
subpopulation correlation could be as low as 0.81. ¢as low as 0.5, the subpopulation
correlation could be negative. If the subpopulation is rmistrained to be bivariate normal,
lower correlations are possible. Finiteness of the pofmratnd subpopulation also widen the
bounds of possible subpopulation correlations — barrirgederate cases, a subpopulation of
two will have a correlation of-1.

Note that a non-random subpopulation can have a distriblté@aring no resemblance to
the parent distribution. Depending on the source of the, dateay be possible to justify an as-
sumption that a certain subpopulation has a distributisameling that of the total population,
but its distribution cannot be inferred from the total dtsttion.

If the population has an arbitrary distribution, then one canstruct examples where the
population has correlationand a subpopulation which omits just one point has a coroelat
c1, for any values o andc; with —1<c<land-1<c¢ <1.

Multivariate analysis

We shall only touch on the complexities of multivariate gséd. If one’s goal is to predict
a variableX, from the values oh — 1 variablesXs,...,X,_1, then the difficulties we have
discussed in the bivariate case are magnified. If the cdiovalbetween each of; 1 and
X, are small, then correlations amoKg 1 can easily defeat an attempt to explain all of the
variation inX.

It is possible to synthesize artificial problems in whickr, é@ample, four variableX;, Xo,



X3, andXy, each correlating 0.5 with a variab¥, together account perfectly for all the vari-
ation inXs. (This will be so, for example, when eachXf 4 is identically and independently
normally distributed, anis = X; + Xo + X3+ X4.) However, it is questionable whether in actual
experimental situations one ever manages to account faga fgoportion (i.e. over 99%) of
the variance of a variable one wishes to explain, by amagsorg and more small correlations
of that variable with other variables (a procedure whichhmilge dubbed “career MANOVA”).
The author would be interested to hear of any real study irchvtiiis has been achieved.

Even that variation irX,, which can be associated with the variab¥gs. .., X,_1 cannot
necessarily be associated with any of them in particularnsiceer the trivariate case. The
multivariate normal distribution over a vector of randonriahlesX = (Xy,...,X,) has the
probability density functioiP(X) = K exp(—XTAX), whereK is a constant, and is a matrix
subject to the constraint that the contour$dfe bounded surfaces.

1 05 05
As an example, takd = | 05 1 05 |. This describes a distribution in which,
05 05 1

when any of the variableX;, X, andXs is fixed, the correlation between the other two is 0.5.
If we estimateXs by X; (which amounts to choosing the major axis of the 0.5 ellipse in
Figure 2 instead of the least-squares line) then the exgprsX; will have a correlation of zero
with X. If, on the other hand, we estimaxg by X;, then the errorXs — X, have a correlation
of zero withX;. There is no way, given only the probability distributionaosampling from it,

of separating the relationshipsX§ with X; andX;.

Causation and correlation

There is a large literature on the subject of deriving caimatmation from correlational ob-
servations, see for example [Pea09, SGS01]. We only havecomark to make here, which is
that an assumption almost universally made in such workasdausation implies correlation:
zero correlations are taken as evidence of absence of carsatction.

There are some very simple systems for which this is not trlese physical causal connec-
tions accompanied by zero correlations. The simplest el@im@ variablex varying in time,
such thak is differentiable, and botk andx are bounded. For example, the voltAgacross a
capacitanc€ and the current through it are related by= CV. By connecting the capacitor
to a variable voltage source, the current can be caused ¢oaik value by suitable varying
the voltage. One could also connect the capacitor to a dusmenmce and vary the current so
as to produce any voltage. So in this example there is a tidal connection between the
two variables, but depending on the hardware surroundiegdipacitor, it can be in either di-
rection. But in whichever direction the causal relatiopdhgs, the correlation between voltage
and current is necessarily zero in the long term, becaudeeoftieorem A.6: subject to some
well-behavedness conditions, a variable is uncorrelattuits first derivative.

This is not in contradiction to the body of work mentionedclsuelationships between
variables simply fall outside the scope of that work. Speally, the relationshify = dx/dt
does not conform to the basic definitions 2.2.1 and 2.2.2 e&QR], for which variables are
only allowed to be functions of each others’ present valnes,their rates of changes. The
same holds for definitions XXXX of [SGS01]. In the framework[aSRHO08], one might
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Figure 1: Scatterplots of time series datayet x.

approximate the relationship= dx/dt in discrete time by, = X,_1 + ky,_1, but this equation
breaks their restriction that a variable (h&@ppearing on both left- and right-hand side of an
equation must not have coefficient 1 on the right.

Briefly, when variables physically depend not just on eatteiis current values, but upon
their rates of change (or their integrals), then the causaltionships may be invisible to
product-moment correlation. Attempts to gain causal imfation about such systems from
correlations will fail.

Figure 1 shows three scatter-plots of variabtendy wherex is a slowly and smoothly
varying random variable, anglis its derivative, both scaled to have unit standard dewiati
and zero mean. The first simply plots the points without rédartheir temporal order. No
relationship between the variables can be discerned. T¢mndgoins consecutive points by
lines. There is still no visible connection between the alales, because the sampling period
was chosen to be much longer than the autocorrelation timekafr the third plot, the sampling
period is much smaller than the autocorrelation time, atgliarthis plot is any structure visible
to the eye.

A more striking example of the dissociation between coti@mteand causation for dynami-
cal systems is given by these equations:

6 = k(r—p)
p = o+d+d;

r is a constantd andd; are assumed to be exogenous, smoothly varying indeperatedam
variables with the same coherence titge Assume thakty > 1 (i.e. the settling time of the
system is much shorter than the coherence timgtafidd;) andk > o(d)/a(d1) > 1. Write
Cap for the correlation between any two variabgeandb. If this system is observed on a time
scale much longer thar/k, then we will find thatc,p andcpg are approximately zero, while
Cod IS close to—1. If these equations are models of a physical system in whiehight-hand
side of each equation is the cause of the left-hand side,ahmmng the variableg, p, andd,
causation is present exactly correlation is absent, anelnalghere correlation is present. No
causal analysis based on correlational data is capableloliyg a correct description.

This set of equations is motivated by control theory. The figuation describes a con-
troller whose purpose is to keep a perceived quanmtiay or close to a reference level This
particular controller does this by calculating the emer p, multiplying by a gain constark,
and integrating the result to produce its output sigmalvhich operates some actuator. The
second equation describes the environment within whiclediméroller is situated, in which the
perceptiorp is the sum ob plus disturbanced (assumed to be something experimentally mea-
surable) andi; (assumed to be not practically measurable). The conditiatkty > 1 means
that the controller acts faster than the disturbance ctarfidee condition that(d) /o(d1) > 1
means that the unmeasured disturbance is a small fractitwe ofieasured disturbance.
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It is a characteristic of control systems in general, thatdhtputs by which they control
their perceptions have very low correlations with thoseeptions, although each continuously
causes the other. If it is functioning well, the perceptidt always be close to the reference,
and the variations about the reference will have the charadftrandom noise. The output
will, however, correlate highly negatively with the totaktlirbanced + d;, since the near-
constant perception is the sum of the two. If the unmeasuaeiip is small compared with
d, the output will correlate closely witt also, despite there being no direct causal connection
between them. The causal connection frdo o is mediated byp, with which both have low
to zero correlation. 1fl; is zero thernp may have some substantial correlation with bdb#ind
0, but it only takes a small amount of unmeasured ndis® swamp the effect, because the
variations ofd ando largely cancel out.

It follows that where control systems are present (as igiakdy the case, for example, with
biological systems) causal analysis from correlation#d d&anot possible.

Other correlational problems

We have considered only bivariate and multivariate cofiaia for normal distributions. We
have not considered analyses where the values of some legrite set by the experimenter
and the values of others observed, nor have we consideredaromal distributions. However,
although the precise figures will be different, we do not etpeir conclusions to be substan-
tially different in these or related situations. See [RurB®75] for further discussion of the
role of correlational studies in experimental investigasi.
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Figure legends

Figure 1: Contour and regression lines for various corimtatoefficients.

Figure 2: Scatter plots of 100 points for various correlatioefficients.
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Figure 2: Contour and regression lines for various cotiaiatoefficients.
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Figure 3: Scatter plots of 100 points for various correlatoefficients.
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Table 1: Correlation, variance, and mutual information.

Variance inY Improvement Mutual
Correlation  attributed t&X  unaccounted for ratio information (bits)
0 0% 100% 1 0
0.2 4% 96% 1.02 0.028
0.5 25% 75% 1.15 0.20
0.8 64% 36% 1.67 0.74
0.866 75% 25% 2 1
0.9 81% 19% 2.29 1.20
0.95 90.25% 9.75% 3.20 1.68
0.99 98% 2% 7.09 2.83
0.995 99% 1% 10 3.32
0.99995 99.99% 0.01% 100 6.64
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Table 2: Binary classification and screening.

Prob. of correct Rate of reliable classification
Correlation  sign estimation 5% confidence 1% confidence

0 50% 0% 0%
0.2 56% 75x 1071y 43x1028%
0.5 67% 0.4% 0.006%
0.8 80% 21.7% 8.1%

0.866 83.3% 34.2% 17.9%
0.9 85.6% 42.6% 26.0%
0.95 89.9% 58.9% 44.4%
0.99 95.5% 81.5% 74.0%
0.995 97.8% 86.9% 81.5%
0.99995 99.68% 98.7% 98.1%
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Table 3: Decile estimation.

Prob. of estimation
Correlation  withint half a decile

0 10%
0.8 25%
0.9 36%

0.95 47%
0.99 78%
0.995 89%
0.997 95%
0.9985 99%
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Table 4: Estimation of population correlation.

Minimum c that must be observed

Desired €=0.05 €=0.01
lower bound orp  Sample size 100 Sample size 20 Sample size 100 Sample size 20
0 0.16 0.36 0.23 0.49
0.2 0.35 0.52 0.41 0.63
0.5 0.61 0.73 0.65 0.79
0.8 0.85 0.90 0.87 0.926
0.866 0.90 0.935 0.914 0.952
0.9 0.927 0.952 0.936 0.964
0.95 0.964 0.976 0.968 0.983
0.99 0.9928 0.9953 0.9937 0.9966
0.995 0.9964 0.9976 0.9969 0.9983
0.99995 0.999964 0.999976 0.999969 0.999983
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Table 5: Correlation in nonrandom subpopulations.

Subpopulation  Min. subpop. corred; for pop. correlc
relative sizk ¢c=05 ¢=08 ¢=09 c¢=095

10% -094 -0.83 -0.68 —0.44
20% -0.79 -047 -0.14 0.22

40% -0.35 0.18 0.50 0.72
50% -0.14 0.38 0.65 0.81
60% 0.04 0.53 0.74 0.87
80% 0.32 0.70 0.85 0.92
100% 0.50 0.80 0.90 0.95
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A Appendix to “Correlations cannot be used for reliable in-
dividual prediction”

This appendix provides proofs of theorems and derivatibfsrmulas stated in the body of the
paper. Itis primarily for the benefit of the referees and ¢éiiasted readers of the main paper
and is not necessarily intended to appear in print.

Most of the mathematics is standard statistical theorywitich see [KSO87] as a general
reference. Some of the calculations here have not to my letyel been previously published.

A.1 The bivariate normal distribution

When integrating with respect to one variable, the follagyiorm of P is useful:

exp(—x2/c?) exp(— (y — cX)?/2)

1
P(x,y,a,b,c) = 2abant

wherex' = x/a, y =y/b, andc’ = 1/v/1—c?. In addition, we recall the following facts about

normal distributions:
/ e ¥ /2 _y\/om

X
X

That is, ﬁe */2¢ is the probability density function for a normal distribariwith mean 0
and standard deviatidn

THEOREMA.1 1. Pis a probability distribution, i.e. it is everywhere noegative, and its
integral over all x and y id.

2. IfY is fixed at y, the distribution of X is a normal distrilmt with mean acyb and
standard deviation a.

3. IfY is unknown, the distribution of X is a normal distritout with mearD and standard
deviation at.
PrROOR
1. Pis obviously non-negative.

1 1% y> 2cxy
Jporabe = mpa [ e 3G E -2

_ ! /X/yexp(%(szrychxy))

2cn

= oo [exp/26?) [exal—(y- cx?/2)
X y

2cTt

-1 /exp(fxz/ZC’Z)/exp(fyz/Z)
x y

2cn
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= ! exp(—x?/2¢?)

C’\/E[ X
-1
2.
1 1% y> 2cxy
P(X,y,a,b,C) = mexm—é(?—i—@_ﬁ))
_ 1 1, y? X Y.,
= ZapenP 2zt 7))

whereK is independent af. This is a normal distribution ok as described.

3. Most of the calculation is included in the proof of part Listlleave out the integration
overx and the change of variablega — x.

O

THEOREMA.2 If X andY are distributed according to P, then the correlataf X and Y is c.

PrROOF The product-moment correlation coefficient of any bivigriprobability distribution
P(X,Y) is defined to be

_ fxfy(x_)_()(y_y)P(va)
VB x=RIZPOY) Sy~ 9)2P(x,Y)

wherex = [, fny(x, y) andy = [, fny(x, y).
For our particular probability distribution, this simpé§ to

S JyxyP(x,y,a,b,c)
a2d202a2
X2 y?  2cxy

1 1

= m/}(/yxyexp(fé(ngE*E))

— %[/X/yxyexp(—%(xzﬁ—yz—%xy))

— s, (xem2e) [yer-5(1y- o))
~ o (xexaok2e) [y exexi-y2)

- %{ (/chzexp(—xz/Zc’z)) (/yexp(—yz/Z))

c 2 2 12
= xcexp(—x-/2¢
c3y/ 2T[/x A=x/2c7)

= c

C

C:
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The fact that the regression linesYofagainstX and ofX againsty are not identical often
seems counterintuitive to beginning students of statisttéggure 2 demonstrates why each line
must stand in the relation it does to the ellipse (at leasafoivariate normal distribution), and
hence why the two lines must be different, and why they apgreach other astends tot+1.

As the ellipses are all similar, we fix on the contour linesKet 1 and consider how the
shape of the ellipse changes with(The contour height i®(1,0,1,1,c) = 1/2m,/e ~ 0.097.)
This contour is defined by the equatigh+y? — 2cxy= 1. Whenc = 0, this is the unit circle.
As c increases, it becomes an ellipse whose major axis is alentineéx =y, and stretches
more and more asapproaches 1. In the limit asapproaches 1, the ellipse stretches without
bound, approximating to the pair of straight lines y = +1. For negative the symmetrical
transformation happens along the lire= —y. Figure 2 shows this for selected valuescof
scaled so that the variables have unit unconditional stamiviation. The ellipses tend to the
finite line segment fronj—1,—1) to (1,1) asc approaches 1.

The values ofd(x) we require sometimes go far beyond the range of standaiidtistait
tables. We have therefore calculated them from formulag8.@or small|x|) and 7.1.13 (for

large|x|) from [AS64], for the related error function €xf) = %Tfo edx erf(x) and®(x) are
related by®(x) = 3 (1+ erf(x//2)).

A.2 Analysis of variance

Suppose we try to fit a function= f(X) to a probability distributiof(X,Y) in the plane. One
measure of the goodness of fit is the average squared error:

[ Pocxie0 -y

If f is to be chosen to minimise this quantity, then it is cleat foa eachx, f(x) should
be chosen to minimisg, P(x,y)(f(x) —y)2. LetP(y) be the distribution ol given X = x.
ThusP(y) = KxP(x,y), whereKy = 1/ [, P(x,y). Sof(x) should minimisef, P(y)(f(x) —y)2.
Since this is equal tof () — V)2 + J,,(Vx — y)?, wherey, = [, yR(y), it is minimised by taking
f(x) =y. In other words, the least squares estimate of a randonblaiits mean.

When this is done, the total variance Yfcan be divided into two parts: the variance in
f(X) due to variation irX, and the remainder, the variancefdX) — Y. We can say that the
first component is the part of the varianceYofvhich is explained by variation iX. This is a
technical mathematical meaning of the word “explain” whigtars little relation to its everyday
use. This calculation can be made regardless of the meahkadY. To draw a line through
a set of points does not in itself constitute an explanatfangthing.

The total variance of, assuming’ to have mean 0, i, fyyZP(x, y). The division into two

components is constructed thus:
[ (3P + [5-ypoey)

/X /y y?P(%y)
Var(f(X))—i—/x/y(f(X)—Y)ZP(X7Y)
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For the bivariate normal distributiof, = bcx/a. Thereforef (X) = bcX/a is the function
which best estimateé from X, and since it happens to be linear, it is also the best strhigh
The two components of the variance afe’c’? andb?, their sum beind?c’?. The proportion
of the variance due t¥ is ¢?, and the remaining proportion is-1¢2.

A.3 Mutual information

For a joint normal distribution we shall compute the entrbigyof X given no information about
Y, and the entrop¥yy of X givenY, where the entropiA (P) of a probability distributiorP
is the integral of-PlogP over the whole space. This enables us to calcujgie= Hx — Hyjy,
the information given about by knowing the value o¥. (Note that this quantity is actually
symmetrical inX andY: it is also the information given abodt by knowing the value oK.
This is true for all distributions.)

THEOREMA.3 The entropy of a one-dimensional normal distribution witimslard deviation
aislog(ayv2m) — 1.

PROOF. LetP(x) = ﬁ exp(x?/2a?).

2 2
/X—PlogP _ ﬁ/}(exq%)(—%—i—log(a\/ﬁ))

= log(av2m) — 1 X—2 exp(x—z)
- ay2m/x2a? T 28
= log(av2m —1
a
THEOREMA.4 Hy = log(ac'v/2m) — 1. Hyy = log(ay/2m) — 1.
PrROOF Immediate from Theorems A.1(parts 2 and 3) and A.3. o

THEOREMA.5 Themutual informatioriyy given about X by knowing the value of Yldgc'.

PROOF. By definition,lxy = Hx — Hyy. The result follows from the preceding theorem.0

A.4 Sign estimation

Without loss of generality, we assume thxatindY are normalised to have standard deviation
1. The proportion of errors in estimating the signYofrom the sign ofX is the measure of
the upper right and lower left quadrants of an elliptical toom line of the distribution, as a
fraction of the area of the ellipse. The ratio of the lengththe x = y andx = —y axes of the

ellipse is }%g Squeezing the plane along tke- y axis by this factor transforms the ellipse
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into a circle, and changes the angle betweerxtardy axes to B, where ta® = ,/%ﬁ. The
proportion sought for is now the ratio of the transformed®exto the area of the circle, which
is 20/ The proportion of correct predictions for a correlatiorcas$ therefore,%tan*l v/ %C:

= 2cos(—c).

Now consider the modified problem of estimating the sigifof Y by the sign ofX’ — X.
(x,y,X,Y) is distributed over a four-dimensional space according(®,Y,X’,Y’) = P(X,Y)
P(X’,Y"), whereP(X,Y) is the bivariate normal distribution. As before we tdkeX,Y) to be
normalised so that both arguments have mean 0, standamidevi, and correlation. The
probability we require is the total measure of the four-disienal subspace within which— x
andy —y have the same sign. Observe tiaand X’ are independently distributed, and that
P(x,y,X,y') is circularly symmetric about the plage= 0,y = 0. The same is true of, Y’, and
the planex = 0, ¥ = 0. ThereforeP(x,y,X,y') remains invariant under any four-dimensional
rotation about these two planes. Consider a rotatiarydfabout each plane. That s, we change
to coordinate$xy, y1,%;,Y;) such that:

xi = (X+x)/V2
g = (X=x/v2
yi = (Y+y)/V2
i = (Y-y)/V2

Then the measure we require is of that part of the space whardy, have the same sign.
SinceP(x,y,X,Y) = P(x1,y1,X},Y;) = P(x1,y1)P(X],y;), this is equal to the measure of that
part of the distributiorP(X,Y) whereX andY have the same sign. This is exactly what we
calculated earlier. Therefore a correlatiorcafplies that the proportion of correct predictions
is L cos}(—c).

A.5 Screening tests

The distribution ofY, givenX = ¥, is normal with standard deviation 1 and mean Whenx
is positive, the probability that is negative is - ®~%(cx). For this to be at mos, x must
be at leasd = %bel(lf €). A similar analysis applies for negatixe Since the unconditional
standard deviation of is ¢/, the probabilityS(c, €) that the magnitude ofis at least this great
is 2(1—®(d/c)).

For the modified screening test problem (estimating thesigfi —Y by the sign ofX’ — X
when |X’ — X]| > 8), we apply the same four-dimensional rotation as for the ifiezti sign
estimation problem. This reduces it to the basic screemistgaroblem.

The number of atoms in 2.5 tons of water i$& 10° gramsx 3 atoms per molecule
x 2.5 x 1P molecules per molg¢ 20 grams per mole of water =25 x 10%°.

A.6 Correlations and regression lines for non-random subppulations

For the relation between population correlatigrsubpopulation correlation;, and relative
subpopulation siz&, we must find the largest ellipse associated with a coroelaif c; which
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is contained in one of correlation This is an ellipse, one axis of which coincides with the
minor axis of the larger ellipse. The ratio of areas of thipsds is the ratio of their other axes.

From the preceding formula it follows that this raticis= % Givenc andk, define
d = k2. Thenc, = . This is the formula tabulated in Table 5.

We can similarly derive a lower bound for the maximum possgubpopulation correlation
(not tabulated in the main paper): thislisd whered’ = k21

An example such as is described at the end of the section gopulations consists of a
subpopulation, bivariately normally distributed with me#®, unconditional standard deviations
1, and correlatiorr, and a population which adds a single poin{atB), for someA andB.
ChoosingA large enough anB = +A gives a population correlation arbitrarily closettd. By
the mean value theorem, there are other choicés afidB yielding any correlation between
those limits.

A.7 Causation and correlation

THEOREMA.6 Let x be a differentiable function of time, such that:

1. x andx are bounded.

. . . t .

2. The mean value of x exists (i.e. iR .. =, /3, xdt exists).

3. The standard deviations of x araXxist and are positive.
Then the correlation of x anxlis zero.
PROOF If we subtract the mean affrom x we can without loss of generality take it to be zero.
The mean ok is the limit of - [% Xdt = 1 (x(t2) — x(ta)) dt, which is zero becauseis
bounded.

The covariance of andx is therefore

t2

— xx dt
t1+t /-y

limtl Jfp—oe0

= Iimtl’tzﬂmm (X(tz)z - X(tl)z)/z
=0

because is bounded. Since the standard deviationg ahdx are positive, their correlation
coefficient is also zero.

Provided thak remains bounded, the conditions of the theorem can be cenadity relaxed,
but the proof becomes more complex.
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