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Abstract

It is well-known that predictions about individuals from st atistical data about the pop-
ulation are in general unreliable. However, the size of the problem is not commonly re-
alised, and predictions about individuals are in practice often made. For a number of ways
of predicting information about one variable from another with which it is correlated, we
compute the reliability of such predictions, given the correlation.

Assuming a bivariate normal distribution, we demonstrate that unless the correlation
is at least 0.99, not even the sign of a variable can be predicted with 95% reliability in an
individual case. The other prediction methods we consider do no better. We do not expect
our results to be substantially different for other distributions or statistical analyses.

Correlations as high as 0.99 are almost unheard of in areas where correlations are
routinely calculated. Where reliable prediction of one variable from another is required,
measurement of correlations is irrelevant, except to show when it cannot be done.

An empirical study of correlations reported in the sociological literature ([McP71]) found that
only 1% of the correlations reported in the papers studied were over 0.4, and only two out of
281 correlations exceeded 0.6. In that area, a correlation of 0.8 is generally considered high,
and a correlation of 0.2 is publishable as demonstrating a connection between two variables.

We consider the question of what such correlations imply forthe task of reliably and/or
accurately predicting the value of one variable from the other. We demonstrate that it is impos-
sible to reliably estimate even the sign of the variable relative to its mean unless the correlation
is at least 0.99. For lesser correlations, such a predictionwill do better than chance on average,
and for some purposes, this is all that is required. However,such correlations are useless for
making reliable predictions in individual cases. Correlations of this level are virtually unheard
of in almost every discipline where statistical methods arecommonly employed.
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Despite this, a frequent use of statistical trends is to makepredictions about individuals.
Aptitude tests and credit rating are two major applications, especially in the latter case if ratings
are derived from rules generated from statistical analysisby data mining applications. An indi-
vidual to whom such tests are applied is, in effect, participating in a lottery. If the test is valid,
the lottery is biased to a greater or lesser extent in his favour, but it is a lottery nonetheless.
Such tests say little about any individual being tested. Just how little, it is the purpose of this
paper to demonstrate.

We are not suggesting an alternative to such assessment methods, or suggesting that they
not be used. We are demonstrating what they can and cannot do.

We use the bivariate normal distribution as a case study, consider several different methods
of gaining information about one variable from the other, and in each case calculate the relia-
bility of the predictions given the correlation coefficient. We briefly consider the problems of
multivariate analysis and estimation of unknown correlations.

We do not expect our conclusions to differ substantially forother distributions or statistical
analyses. Only standard mathematical statistical theory is required. See [KSO87] as a general
reference.

The bivariate normal distribution

We recall for reference some basic data about the bivariate normal distribution. This distribu-
tion over two random but correlated real variablesX andY whose means are both 0 has the
probability density function:

P(x,y,a,b,c) =
1

2abc′π
exp(−1

2
(
x2

a2 +
y2

b2 −
2cxy
ab

))

where−1< c< 1 andc′ = 1/
√

1−c2. a is the standard deviation ofX, given thatY = y. (This
is independent ofy.) We shall call this theconditional standard deviationof X. b is similarly
the standard deviation ofY, given a fixed valueX = x. c is the product-moment correlation
coefficient ofX andY.

The conditional distribution ofX, given that the value ofY is y, is a normal distribution with
meanacy/b and standard deviationa.

If Y is unknown, the distribution ofX is a normal distribution with mean 0 and standard
deviationac′. We termac′ the unconditional standard deviationof X. Similarly, bc′ is the
unconditional standard deviation ofY.

To visualiseP(x,y,a,b,c), it is helpful to look at its contour lines. These are the family of

ellipses x2

a2 + y2

b2 − 2cxy
ab = constant. Sincea andb are just scaling factors, we take them to be

1. The axes of the ellipses are the linesx = ±y, and they intersect the coordinate axes at±k
for any k. Whenc = 0 they are circles, and for positivec they are elongated along the line

x = y. The ratio of the axes is
√

1+c
1−c. Figure 2 illustrates this for selected values ofc. This

gives an immediate feel for how useful a correlation is for estimatingY, given the value ofX.
A scatterplot of data drawn from these distributions will have roughly the shape of the ellipses.
Figure 3 shows such plots for 100 random points chosen from the same distributions.
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A correlation of 0.99 is about the point at which the data begin to resemble a straight line
rather than a cloud. The slanting line in each figure is the regression line ofY againstX. It
passes through the origin and the points where the ellipse has a vertical tangent. Its gradient is
c. This line represents the maximum likelihood estimate ofY, givenX. Notice that it differs
from the maximum likelihood estimate ofX, givenY, which is a line through the origin of
gradient 1/c, meeting the ellipse at its horizontal tangents.

We will also use the probability distribution function of the (univariate) normal distribution,
Φ(x) = 1√

2π

R x
−∞ e−x2/2dx. This is the distribution function for mean 0 and standard deviation

1; for the general case of meanµ and standard deviationσ we defineΦµ,σ(x) = Φ((x−µ)/σ).
As the values we require ofΦ(x) sometimes go far beyond the range of standard statistical

tables, we have calculated them ourselves from formulae 7.1.26 (for small|x|) and 7.1.13 (for
large|x|) from [AS64], for the related error function erf(x) = 2√

π
R x

0 e−x2
dx.

Analysis of variance

The functionf for which the liney = f (x) best fits the probability distribution, in the sense of
minimising the expected squared error, is the straight liney= cxwhich was plotted in Figure 2.
The proportion of the variation ofY which is “explained” by this estimate (in the technical
sense which the theory of analysis of variance assigns to this word) isc2. The remaining,
“unexplained” proportion is 1−c2. The latter quantity is called thecoefficient of alienationor
dissociation, or more colloquially thecoefficient of uselessness. The second and third columns
of Table 1 tabulate these quantities for various values ofc.

Note that correlation does not imply causality. It does not follow merely from an analysis
of variance of this sort that either variable has any causal influence on the other.

Improvement ratios

A further feeling for what the correlation coefficient meanscan be gained by considering the
ratio of the standard deviation ofY to the standard deviation ofY givenX, when the correlation
is c. This ratio isc′ (independent ofX, a, andb). Call this theimprovementof our knowledge
of Y. This is a real number greater than or equal to 1. 1 means no improvement, 10 means that
knowingX reduces the standard deviation ofY by a factor of 10, etc. The fourth column of
Table 1 shows the improvement ratio for various correlations.

Mutual information

For two jointly distributed random variablesX andY, the mutual information betweenX and
Y is the maximum amount of information about either variable which can be obtained from
knowing the exact value of the other. It is denoted byIX|Y and is measured in bits. For a joint
normal distribution with correlationc, IX|Y = logc′. This is tabulated in the fifth column of
Table 1.
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It is illuminating to consider some examples. Suppose we require that knowing the value
of Y should give 1 bit of information aboutX. Then logc′ must be 1, which impliesc = 0.866.
Suppose we require to predictY to within 1 part inN. ThenIX|Y = log2N, andc=

√

1−1/N2.
If N is at least 5, then this is well estimated by 1−1/2N2.

TakingN = 10 — one decimal digit of accuracy — givesc = 0.995. To obtain two decimal
digits accuracy requiresc = 0.99995. Clearly, when obtaining results of such accuracy, one
does not trouble to measure correlation coefficients at all.The variables being measured are
obviously correlated, and one is more likely to concern oneself with the precise form of their
relationship and the mechanism which produces it.

Now consider correlations such as are commonly reported in statistical studies, such as
those examined in [McP71]. For example, suppose studies show that between 40% and 80%
of the variation in some variableY is explained by variation inX, i.e. the correlationc is in
the range

√

(0.4) to
√

(0.8), that is, 0.63 to 0.89. Thenc′ is in the range 1.29 to 2.24, and
the mutual information is between 0.35 and 1.16. That is, knowing everything aboutX for
an individual gives somewhere between one-third of a bit andjust over one bit of information
about that individual’sY.

The caution is often made that such correlations do not warrant drawing conclusions about
individuals. However, every time a statistically validated test is used to make a decision about
an individual either one is drawing such a conclusion, or oneis indifferent to the accuracy of the
decision with regard to the specific individual, for the samereason that a casino is indifferent
to the outcome of any particular bet. This issue arises not only for the correlation between the
thing being tested for and the thing being predicted, but also for the correlation between the test
score and the entity the test is intended to measure. We have no alternative to suggest; we are
simply pointing out the scale of the problem.

Far lower correlations than 0.89 are often published. The previously cited survey ([McP71])
found that only 1% of the correlations reported were over 0.4, corresponding to a mutual in-
formation of 0.125. For practical purposes, this is no information at all inthe individual case.
Yet because a sufficient quantity of data has been amassed to be statistically sure at a high
confidence level that the correlation differs from 0, such a result can be published and claimed
to demonstrate a connection between two variables, when in practice it demonstrates a lack of
connection.

Practical predictions

The mutual information is the maximum amount of informationthat could possibly be obtained
aboutY by knowingX. It does not give any method for actually extracting that much informa-
tion, and in general it may not be possible. We consider in this section three practical methods
of attempting to estimateY from X. For simplicity, we take the means ofX andY to be zero,
and the conditional standard deviationsa andb to be 1. We also assume thatc is non-negative.

Sign estimation

Suppose we attempt to predict just one bit of information aboutY, givenX, one yes-no decision:
whetherY is positive. If the correlation is positive then the best we can do is to estimate the sign
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of Y by that ofX. What proportion of correct predictions will we make overall? The formula
for this is 1

π cos−1(−c), tabulated in the second column of Table 2.
At a correlation of 0.5, classification is correct 2/3 of the time, compared with the 50%

that would be obtained by blind guessing. There is no way to tell which 1/3 of the decisions
are the incorrect ones. 0.8 correlation gives four out of five correct, not good odds when the
decision is of any importance to the individual. If the individual demands that the same standard
of confidence apply to his case as are commonly used in the detection of statistical trends,
i.e. 95% or 99% confidence of receiving a correct decision, then the required correlation is
0.988 or 0.9995 respectively.

The task of sign estimation assumes that one knows the means of X andY. We can devise
a similar task which does not depend on this information. Given two random individuals, we
can estimate which has the higher value ofy by seeing which has the higher value ofx. The
proportion of correct decisions turns out to be the same as the probability that for a single
individual,y has the same sign asx, which we have just computed.

Screening tests

Although, as we mentioned above, we cannot tell which of the predictions ofY from X are the
correct ones, we can be more confident of those where the magnitude ofX is large. We therefore
pose the questions: How large must the magnitude ofX be, for the estimate of the sign ofY to
be correct at least 1− ε of the time? And for what proportion of the population doesX have
such a magnitude? To the first question, the answer is that|x| must be at leastδ = 1

cΦ−1(1−ε).
To the second, the answer isS(c,ε) = 2(1−Φ(δ/c′)). S is tabulated for various values ofc and
for ε = 5% and 1% in the third and fourth columns of Table 2.

A correlation of 0.2 is clearly useless. To give concrete meaning to just how useless it is,
suppose that such a test were being applied to the entire human population of the world (cur-
rently about 6×109 people). There is only about one chance in 200,000 thatanyonewould be
reliably classified at the 5% level. At the 1% level, the probability of a given individual being
reliably classified is 1 in 2.3× 1029. The latter number is the number of atoms in about 2.5
tons of water. (These extreme figures must be taken with some common sense. In practice, no
real distribution can even be observed at such a large distance from the mean, let alone mea-
sured. Nevertheless, for any distribution with rapidly decreasing tails, the qualitative conclusion
holds.)

At a correlation of 0.5, fewer than 5 in 1000 of the populationare reliably classified. This
is still useless. A correlation of 0.9 reliably classifies less than half the population at the 5%
confidence level. Only at a correlation of 0.99 does it begin to be useful — four fifths of the
population are reliably classified at the 5% confidence level, and nearly three quarters at the 1%
confidence level.

If an individual requires a 95% chance of receiving a prediction that has a 95% chance of
being correct, the correlation must be over 0.99995, and fora 99% chance of receiving a predic-
tion that is 99% likely to be accurate, the required correlation will be in practice unmeasurably
close to 1.

If Y is impossible to measure at the time when a prediction of its value is required, then
with a correlation of less than 0.99 one must either make manyunreliable predictions, or refuse
to make predictions in many cases. IfY can be measured, then we can predict it fromX
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when|X| > δ, and measureY in the remaining cases. This is useful whenY is more difficult or
expensive to measure thanX. That is, the measurement ofX is used as a screening test. Whether
this is worth doing depends on the relative cost of the two measurements and the proportion of
the population which is reliably classified by the measurement of X. If a direct measurement
of Y costsK times as much as a measurement ofX, then using the screening test will give a
relative saving ofS(c,ε)−1/K over the cost of measuringY in every case. For this to be an
improvement requiresK > 1/S(c,ε). The maximum possible cost saving, in the limit where
testingX is free, isS. At a correlation of 0.9, the cost ratio is 2.3, and the cost saving can be at
most 42.6%.

Only at a correlation of 0.99 does it begin to be useful — four fifths of the population can
be given just the simple test at the 5% confidence level, and nearly three quarters at the 1% con-
fidence level. The break-even point for costs is a ratio of 1.2or 1.33 respectively. Nevertheless,
it must not be forgotten that if a screening test is only accurate at the 1% confidence level, then
about 1% of those it is given towill be misclassified. What proportion of misclassifications is
acceptable depends on the purpose of the test and on the context in which it is being used.

As for the case of sign estimation, we can devise a version of the screening test which does
not require knowing the mean ofX. Given a correlationc, and two random samples(x,y) and
(x′,y′), suppose we predict thaty′ > y if x′−x is at least a certain amountδ. How large should
δ be to ensure that when we make this prediction, we can have at least a certain confidence in
it, and given the confidence we require, what proportion of pairs of random samples allow such
a prediction to be made? As for simple sign estimation, this problem reduces by a change of
variables to the screening problem we have just studied, andthe same figures apply.

Decile estimation

Just as a correlation sufficient to give one bit of mutual information is not enough to perform
reliable sign estimation, so a correlation giving one decimal digit’s worth of information is not
enough to reliably estimate the magnitude of the dependent variable with that accuracy.

If we usebcx/a to estimatey, we can ask the question, how likely is it for a random data
point(x,y), thatbcx/a andy differ by no more than half a decile either way of the unconditional
distribution ofY? The probability is

R x=∞
x=−∞ Φcx,1(y1)−Φcx,1(y0) wherey0 = Φ−1

0,c′(Φ0,c′(cx)−
α/2), y1 = Φ−1

0,c′(Φ0,c′(cx)+α/2), andα = 0.1. This is tabulated in Table 3. For an estimate to
this accuracy to be wrong in no more than 5% of cases requires acorrelation of at least 0.997.

Comparison between correlation and measurement

If one wishes to know the value of some variableX, the obvious thing to do is to measure it.
WhenX cannot be directly measured, one may instead be able to measure something correlated
with it, and use that to estimateX. Here we shall compare the efficacy of the two approaches.
Suppose that we have a method of measuringX which is, however, subject to some error. For
simplicity of the example, we shall suppose thatX is normalised to have mean 0 and standard
deviation 1, and that we can exactly measure some quantityY such thatY = X + D1, where
D1 is a normally distributed random variable independent ofX whose mean is zero and whose
standard deviation is 0.1. Y is, roughly speaking, a measurement whose error is about 10%of
the spread of values ofX—not a very good one.
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Suppose that someone else finds a variableZ having a correlation of 0.8 with X. This is a
fairly high correlation, by the standards usually applied when correlations are being computed.
We shall assume that the underlying reality is thatZ = X +D2, whereD2 is a random variable
independent ofX andD1.

In general, the correlation betweenX and X + D is c = 1/
√

1+d2, where the standard
deviation ofD is d. The mutual information is log

√

1+1/d2. Let d1 andd2 be the standard
deviations ofD1 andD2, andc1 andc2 be the correlations ofY andZ with X. We are given
that d1 = 0.1 andc2 = 0.8, thereforec1 = 0.99504 andd2 = 0.75. The mutual informations
are I1 = 3.329 andI2 = 0.737. Thus the “poor” measurement yields more than four timesas
much information as the “good” correlation. Suppose we poolboth sources of information to
make an even better estimate ofX. The standard deviation ofX conditional on knowing bothY

andZ is c′3 =
√

1+1/d2
1 +1/d2

2. The resulting mutual information isI3 = log2c′3. This gives
I3 = 3.3417. Thus the extra information gained fromZ, givenY, is a mere 0.013 bits.

For a more typical correlation of 0.6 betweenX andZ, the figures ared2 = 1.333,I2 = 0.322,
I3 = 3.333, andI3− I1 = 0.004. If the measurementY is to two significant figures instead of
one, we havec1 = 0.99995,I1 = 6.644, and the extra information fromZ is 0.00004 bits.

Accuracy of the sample correlation coefficient

So far, we have considered the correlation coefficient of thepopulation to be given. In practice,
it is estimated from a sample, and there will be some uncertainty in the estimate. The smaller
the sample, the larger the uncertainty.

To make this estimate, it is not sufficient to merely establish that the sample correlation and
the sample size imply that the population correlation is very likely to be positive. As we have
seen, the mere knowledge that a correlation is positive doesnot imply any useful relationship
between the variables. We must obtain a numerical estimate of the minimum likely value of
the population correlation. (Usually, one will not be concerned to place an upper bound on the
correlation — the higher the correlation, the better.)

To do this, we need to know the distribution of the sample correlation, given the population
correlation and the sample size. For the bivariate normal distribution, this may be accurately
estimated via Fisher’sz-transformation ([KSO87, §16.33], [Wil62, p. 594]). For a sufficiently
large sample sizen, a sample correlationc, and a population correlationρ, let z= 1

2 log 1+c
1−c and

ζ = 1
2 log 1+ρ

1−ρ . Then(z− ζ)
√

n−1 is very close to being normally distributed with mean 0 and
standard deviation 1.

From this result we can calculate a confidence bound for an estimate of population correla-
tion. If we observe a positive sample correlationc in a sample of sizen, for what valueρ can
we conclude with confidence that the population correlationis at leastρ? Table 4 tabulates this
for sample sizes of 100 and 20 and confidence levels of 95% and 99%.

To be sure at the 5% confidence level that the population correlation is at least, say, 0.866
(giving exactly one bit of mutual information between the variables), the correlation observed
for a sample of 100 must be at least 0.9. If the sample size is only 20, one needs to observe a
sample correlation of at least 0.935. At the 1% confidence level the sample correlation needs to
be even higher: 0.914 and 0.952 respectively.
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At lower correlations the difference between sample correlation and minimum likely pop-
ulation correlation is even larger. If one is interested in knowing with 95% confidence that the
population correlation is at least 0.2, a sample of 20 must display a correlation of at least 0.52
to allow this inference to be drawn.

The relation between population, sample correlation, and confidence level can be looked at
in another way. If one desires to detect at confidence levelε that the population correlation is at
leastc, then if the population correlation is actually onlyc, the probability that one’s test will
detect it is onlyε.

Relationships for populations and individuals

Suppose that the bivariate data arise from taking some number of individuals, and obtaining
from each individual some number of pairs(x,y). The set of all the data will have a certain
correlationc betweenx andy. The set of data from theith individual will have a correlationci .
What relation may hold betweenc and the individualci? What relation may hold between the
regression line for the whole data and the regression lines for individuals?

No relation need hold at all. To visualise why this is, imagine the scatterplot of the whole
set of data. Ifc is positive, this will have the general shape of an oval in thexyplane whose long
axis has positive gradient, as in Figure 2. Each individual’s data will consist of some subset of
those points. Clearly, it is possible to cover the oval with smaller ovals whose eccentricities and
long axis directions bear no relationship to each other nor to those properties of the whole oval.

This has nothing to do with the particular distribution, or with c as the statistic; clearly, the
same situation obtains for any statistic calculated from any population distribution other than
highly degenerate ones, such as a population of identical data points.

The moral of this is that no argument can be made from a relationship between variables
shown by a population, and the relationship between them forany individual. The population
relationship is a property only of the population, and not ofany individual in it; excluding
degenerate cases,anyrelationship between the population variables is consistent with anyindi-
vidual relationship, oranycombination of individual relationships. See [Pow90] for asimulated
example in which the correlation between an independent variable and a dependent variable had,
for every individual in a population, a sign opposite to thatof the correlation over the whole
population.

If enough data points are taken for each individual to estimate the relationship between
X andY for an individual, then the group statistics are irrelevantto that task. If not enough
data points have been taken, the task is impossible, and the group statistics are still irrelevant.
In many situations, only one data point(x,y) is measured per individual. This is the case,
for example, in most data collected from surveys. It is also inherent in the nature of some
experiments, especially in the area of learning. It is not possible to predict from such a data set
whaty would have been for a given individual ifx had been different. However, it is easier to
overlook the error, since an actual distribution of data from that individual is not available as a
standard to compare with the prediction.
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Predictions for non-random subpopulations

The preceding section assumes that the quantity of data froma single individual is a small
proportion of the whole data set. For larger non-random subpopulations, it is possible to say
something about the relationship between population and subpopulation statistics, but not very
much. For bivariate normal correlations we shall ask: givena population correlation ofc, and
a subpopulation containing a proportionκ of the whole, what lower bound can be placed on
the subpopulation correlationc1? We give a simple analysis based on the pictures of Figure 2,
which will place an upper bound on this lower bound. That is, we shall exhibit a particular
subpopulation designed to have a lowc1. In general it will not be the lowest possible.

If we inscribe the largest possible circle inside an elliptical contour, this represents a contour
for a subpopulation with a bivariate normal distribution with correlation zero. The relative size
of that subpopulation is the ratio of the areas of the circle and the ellipse, which is the ratio of

the minor and major axes of the ellipses. This is
√

1−c
1+c. More generally, consider a population

with a correlation ofc, and a subpopulation with the same means, and a correlation of c1.
Givenc andc1 < c, how large can the subpopulation be, assuming both are bivariately normally
distributed? This is the same as asking for the largest possible relative area of a contour ellipse

for correlationc1 contained in one having correlationc, and isκ =
√

(1−c)(1+c1)
(1+c)(1−c1)

. If c and

κ are given, this formula gives an upper bound on the minimum possible correlationc1 of a
subpopulation of relative sizeκ in a population of sizec. This is tabulated in Table 5 for several
values ofc and a range of subpopulation sizes.

For a subpopulation of half the total population, if the population correlation is 0.95, the
subpopulation correlation could be as low as 0.81. Forc as low as 0.5, the subpopulation
correlation could be negative. If the subpopulation is not constrained to be bivariate normal,
lower correlations are possible. Finiteness of the population and subpopulation also widen the
bounds of possible subpopulation correlations — barring degenerate cases, a subpopulation of
two will have a correlation of±1.

Note that a non-random subpopulation can have a distribution bearing no resemblance to
the parent distribution. Depending on the source of the data, it may be possible to justify an as-
sumption that a certain subpopulation has a distribution resembling that of the total population,
but its distribution cannot be inferred from the total distribution.

If the population has an arbitrary distribution, then one can construct examples where the
population has correlationc and a subpopulation which omits just one point has a correlation
c1, for any values ofc andc1 with −1 < c < 1 and−1≤ c1 ≤ 1.

Multivariate analysis

We shall only touch on the complexities of multivariate analysis. If one’s goal is to predict
a variableXn from the values ofn− 1 variablesX1, . . . ,Xn−1, then the difficulties we have
discussed in the bivariate case are magnified. If the correlations between each ofX1...n−1 and
Xn are small, then correlations amongX1...n−1 can easily defeat an attempt to explain all of the
variation inXn.

It is possible to synthesize artificial problems in which, for example, four variablesX1, X2,
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X3, andX4, each correlating 0.5 with a variableX5, together account perfectly for all the vari-
ation inX5. (This will be so, for example, when each ofX1...4 is identically and independently
normally distributed, andX5 = X1+X2+X3+X4.) However, it is questionable whether in actual
experimental situations one ever manages to account for a large proportion (i.e. over 99%) of
the variance of a variable one wishes to explain, by amassingmore and more small correlations
of that variable with other variables (a procedure which might be dubbed “career MANOVA”).
The author would be interested to hear of any real study in which this has been achieved.

Even that variation inXn which can be associated with the variablesX1, . . . ,Xn−1 cannot
necessarily be associated with any of them in particular. Consider the trivariate case. The
multivariate normal distribution over a vector of random variablesX = (X1, . . . ,Xn) has the
probability density functionP(X) = K exp(−XTAX), whereK is a constant, andA is a matrix
subject to the constraint that the contours ofP be bounded surfaces.

As an example, takeA =





1 0.5 0.5
0.5 1 0.5
0.5 0.5 1



. This describes a distribution in which,

when any of the variablesX1, X2 andX3 is fixed, the correlation between the other two is 0.5.
If we estimateX3 by X1 (which amounts to choosing the major axis of thec = 0.5 ellipse in
Figure 2 instead of the least-squares line) then the errorsX3−X1 will have a correlation of zero
with X2. If, on the other hand, we estimateX3 by X2, then the errorsX3−X2 have a correlation
of zero withX1. There is no way, given only the probability distribution ora sampling from it,
of separating the relationships ofX3 with X1 andX2.

Causation and correlation

There is a large literature on the subject of deriving causalinformation from correlational ob-
servations, see for example [Pea09, SGS01]. We only have oneremark to make here, which is
that an assumption almost universally made in such work is that causation implies correlation:
zero correlations are taken as evidence of absence of causalconnection.

There are some very simple systems for which this is not true:close physical causal connec-
tions accompanied by zero correlations. The simplest example is a variablex varying in time,
such thatx is differentiable, and bothx andẋ are bounded. For example, the voltageV across a
capacitanceC and the currentI through it are related byI = CV̇. By connecting the capacitor
to a variable voltage source, the current can be caused to take any value by suitable varying
the voltage. One could also connect the capacitor to a current source and vary the current so
as to produce any voltage. So in this example there is a tight causal connection between the
two variables, but depending on the hardware surrounding the capacitor, it can be in either di-
rection. But in whichever direction the causal relationship lies, the correlation between voltage
and current is necessarily zero in the long term, because of the Theorem A.6: subject to some
well-behavedness conditions, a variable is uncorrelated with its first derivative.

This is not in contradiction to the body of work mentioned: such relationships between
variables simply fall outside the scope of that work. Specifically, the relationshipy = dx/dt
does not conform to the basic definitions 2.2.1 and 2.2.2 of [Pea09], for which variables are
only allowed to be functions of each others’ present values,not their rates of changes. The
same holds for definitions XXXX of [SGS01]. In the framework of [LSRH08], one might
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Figure 1: Scatterplots of time series data fory = ẋ.

approximate the relationshipy = dx/dt in discrete time byxn = xn−1+kyn−1, but this equation
breaks their restriction that a variable (herex) appearing on both left- and right-hand side of an
equation must not have coefficient 1 on the right.

Briefly, when variables physically depend not just on each other’s current values, but upon
their rates of change (or their integrals), then the causal relationships may be invisible to
product-moment correlation. Attempts to gain causal information about such systems from
correlations will fail.

Figure 1 shows three scatter-plots of variablesx andy wherex is a slowly and smoothly
varying random variable, andy is its derivative, both scaled to have unit standard deviation
and zero mean. The first simply plots the points without regard to their temporal order. No
relationship between the variables can be discerned. The second joins consecutive points by
lines. There is still no visible connection between the variables, because the sampling period
was chosen to be much longer than the autocorrelation time ofx. For the third plot, the sampling
period is much smaller than the autocorrelation time, and only in this plot is any structure visible
to the eye.

A more striking example of the dissociation between correlation and causation for dynami-
cal systems is given by these equations:

ȯ = k(r − p)

p = o+d+d1

r is a constant.d andd1 are assumed to be exogenous, smoothly varying independent random
variables with the same coherence timetd. Assume thatktd ≫ 1 (i.e. the settling time of the
system is much shorter than the coherence time ofd andd1) andk≫ σ(d)/σ(d1) ≫ 1. Write
cab for the correlation between any two variablesa andb. If this system is observed on a time
scale much longer than 1/k, then we will find thatcop andcpd are approximately zero, while
cod is close to−1. If these equations are models of a physical system in whichthe right-hand
side of each equation is the cause of the left-hand side, thenamong the variableso, p, andd,
causation is present exactly correlation is absent, and absent where correlation is present. No
causal analysis based on correlational data is capable of yielding a correct description.

This set of equations is motivated by control theory. The first equation describes a con-
troller whose purpose is to keep a perceived quantityp at or close to a reference levelr. This
particular controller does this by calculating the errorr − p, multiplying by a gain constantk,
and integrating the result to produce its output signalo, which operates some actuator. The
second equation describes the environment within which thecontroller is situated, in which the
perceptionp is the sum ofo plus disturbancesd (assumed to be something experimentally mea-
surable) andd1 (assumed to be not practically measurable). The condition thatktd ≫ 1 means
that the controller acts faster than the disturbance changes. The condition thatσ(d)/σ(d1) ≫ 1
means that the unmeasured disturbance is a small fraction ofthe measured disturbance.

11



It is a characteristic of control systems in general, that the outputs by which they control
their perceptions have very low correlations with those perceptions, although each continuously
causes the other. If it is functioning well, the perception will always be close to the reference,
and the variations about the reference will have the character of random noise. The output
will, however, correlate highly negatively with the total disturbanced + d1, since the near-
constant perception is the sum of the two. If the unmeasured part d1 is small compared with
d, the output will correlate closely withd also, despite there being no direct causal connection
between them. The causal connection fromd to o is mediated byp, with which both have low
to zero correlation. Ifd1 is zero thenp may have some substantial correlation with bothd and
o, but it only takes a small amount of unmeasured noised1 to swamp the effect, because the
variations ofd ando largely cancel out.

It follows that where control systems are present (as is invariably the case, for example, with
biological systems) causal analysis from correlational data is not possible.

Other correlational problems

We have considered only bivariate and multivariate correlations for normal distributions. We
have not considered analyses where the values of some variables are set by the experimenter
and the values of others observed, nor have we considered non-normal distributions. However,
although the precise figures will be different, we do not expect our conclusions to be substan-
tially different in these or related situations. See [Run90, Bro75] for further discussion of the
role of correlational studies in experimental investigations.
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Figure legends

Figure 1: Contour and regression lines for various correlation coefficients.

Figure 2: Scatter plots of 100 points for various correlation coefficients.
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c = 0 c = 0.2 c = 0.5 c = 0.8 c = 0.866

c = 0.9 c = 0.95 c = 0.99 c = 0.995 c = 0.99995

Figure 2: Contour and regression lines for various correlation coefficients.
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c = 0 c = 0.2 c = 0.5 c = 0.8 c = 0.866

c = 0.9 c = 0.95 c = 0.99 c = 0.995 c = 0.99995

Figure 3: Scatter plots of 100 points for various correlation coefficients.
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Table 1: Correlation, variance, and mutual information.

Variance inY Improvement Mutual
Correlation attributed toX unaccounted for ratio information (bits)

0 0% 100% 1 0
0.2 4% 96% 1.02 0.028
0.5 25% 75% 1.15 0.20
0.8 64% 36% 1.67 0.74

0.866 75% 25% 2 1
0.9 81% 19% 2.29 1.20
0.95 90.25% 9.75% 3.20 1.68
0.99 98% 2% 7.09 2.83
0.995 99% 1% 10 3.32

0.99995 99.99% 0.01% 100 6.64
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Table 2: Binary classification and screening.

Prob. of correct Rate of reliable classification
Correlation sign estimation 5% confidence 1% confidence

0 50% 0% 0%
0.2 56% 7.5×10−14% 4.3×10−28%
0.5 67% 0.4% 0.006%
0.8 80% 21.7% 8.1%

0.866 83.3% 34.2% 17.9%
0.9 85.6% 42.6% 26.0%
0.95 89.9% 58.9% 44.4%
0.99 95.5% 81.5% 74.0%
0.995 97.8% 86.9% 81.5%

0.99995 99.68% 98.7% 98.1%
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Table 3: Decile estimation.

Prob. of estimation
Correlation within± half a decile

0 10%
0.8 25%
0.9 36%
0.95 47%
0.99 78%
0.995 89%
0.997 95%
0.9985 99%
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Table 4: Estimation of population correlation.

Minimum c that must be observed
Desired ε = 0.05 ε = 0.01

lower bound onρ Sample size 100 Sample size 20 Sample size 100 Sample size 20
0 0.16 0.36 0.23 0.49

0.2 0.35 0.52 0.41 0.63
0.5 0.61 0.73 0.65 0.79
0.8 0.85 0.90 0.87 0.926

0.866 0.90 0.935 0.914 0.952
0.9 0.927 0.952 0.936 0.964
0.95 0.964 0.976 0.968 0.983
0.99 0.9928 0.9953 0.9937 0.9966
0.995 0.9964 0.9976 0.9969 0.9983

0.99995 0.999964 0.999976 0.999969 0.999983
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Table 5: Correlation in nonrandom subpopulations.

Subpopulation Min. subpop. correl.c1 for pop. correl.c
relative sizeκ c = 0.5 c = 0.8 c = 0.9 c = 0.95

10% −0.94 −0.83 −0.68 −0.44
20% −0.79 −0.47 −0.14 0.22
40% −0.35 0.18 0.50 0.72
50% −0.14 0.38 0.65 0.81
60% 0.04 0.53 0.74 0.87
80% 0.32 0.70 0.85 0.92
100% 0.50 0.80 0.90 0.95
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A Appendix to “Correlations cannot be used for reliable in-
dividual prediction”

This appendix provides proofs of theorems and derivations of formulas stated in the body of the
paper. It is primarily for the benefit of the referees and of interested readers of the main paper
and is not necessarily intended to appear in print.

Most of the mathematics is standard statistical theory, forwhich see [KSO87] as a general
reference. Some of the calculations here have not to my knowledge been previously published.

A.1 The bivariate normal distribution

When integrating with respect to one variable, the following form ofP is useful:

P(x,y,a,b,c) =
1

2abc′π
exp(−x′2/c′2)exp(−(y′−cx′)2/2)

wherex′ = x/a, y′ = y/b, andc′ = 1/
√

1−c2. In addition, we recall the following facts about
normal distributions:

Z

x
e−x2/2k2

= k
√

2π
Z

x
x2e−x2/2k2

= k3
√

2π

That is, 1
k
√

2π e−x2/2k2
is the probability density function for a normal distribution with mean 0

and standard deviationk.

THEOREM A.1 1. P is a probability distribution, i.e. it is everywhere non-negative, and its
integral over all x and y is1.

2. If Y is fixed at y, the distribution of X is a normal distribution with mean acy/b and
standard deviation a.

3. If Y is unknown, the distribution of X is a normal distribution with mean0 and standard
deviation ac′.

PROOF.

1. P is obviously non-negative.
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=
1

c′
√

2π

Z

x
exp(−x2/2c′2)

= 1

2.

P(x,y,a,b,c) =
1

2abc′π
exp(−1

2
(
x2

a2 +
y2

b2 −
2cxy
ab

))

=
1

2abc′π
exp(−1

2
(

y2

b2c′2
+(

x
a
− cy

b
)2)

= K exp(−1
2
(
x
a
− cy

b
)2)

whereK is independent ofx. This is a normal distribution ofX as described.

3. Most of the calculation is included in the proof of part 1. Just leave out the integration
overx and the change of variablesx/a→ x.

2

THEOREM A.2 If X and Y are distributed according to P, then the correlation of X and Y is c.

PROOF. The product-moment correlation coefficient of any bivariate probability distribution
P(X,Y) is defined to be

C =

R

x

R

y(x−x)(y−y)P(x,y)
√

R

x

R

y(x−x)2P(x,y)
R

x

R

y(y−y)2P(x,y)

wherex =
R

x

R

yxP(x,y) andy =
R

x

R

yyP(x,y).
For our particular probability distribution, this simplifies to
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2

The fact that the regression lines ofY againstX and ofX againstY are not identical often
seems counterintuitive to beginning students of statistics. Figure 2 demonstrates why each line
must stand in the relation it does to the ellipse (at least fora bivariate normal distribution), and
hence why the two lines must be different, and why they approach each other asc tends to±1.

As the ellipses are all similar, we fix on the contour lines fork = 1 and consider how the
shape of the ellipse changes withc. (The contour height isP(1,0,1,1,c) = 1/2π

√
e∼ 0.097.)

This contour is defined by the equationx2 +y2−2cxy= 1. Whenc = 0, this is the unit circle.
As c increases, it becomes an ellipse whose major axis is along the line x = y, and stretches
more and more asc approaches 1. In the limit asc approaches 1, the ellipse stretches without
bound, approximating to the pair of straight linesx− y = ±1. For negativec the symmetrical
transformation happens along the linex = −y. Figure 2 shows this for selected values ofc,
scaled so that the variables have unit unconditional standard deviation. The ellipses tend to the
finite line segment from(−1,−1) to (1,1) asc approaches 1.

The values ofΦ(x) we require sometimes go far beyond the range of standard statistical
tables. We have therefore calculated them from formulae 7.1.26 (for small|x|) and 7.1.13 (for
large|x|) from [AS64], for the related error function erf(x) = 2√

π
R x

0 e−x2
dx. erf(x) andΦ(x) are

related byΦ(x) = 1
2(1+erf(x/

√
2)).

A.2 Analysis of variance

Suppose we try to fit a functionY = f (X) to a probability distributionP(X,Y) in the plane. One
measure of the goodness of fit is the average squared error:

Z

x

Z

y
P(x,y)( f (x)−y)2

If f is to be chosen to minimise this quantity, then it is clear that for eachx, f (x) should
be chosen to minimise

R

yP(x,y)( f (x)− y)2. Let Px(y) be the distribution ofY given X = x.

ThusPx(y) = KxP(x,y), whereKx = 1/
R

y P(x,y). So f (x) should minimise
R

y Px(y)( f (x)−y)2.

Since this is equal to( f (x)−yx)
2 +

R

y(yx−y)2, whereyx =
R

y yPx(y), it is minimised by taking
f (x) = y. In other words, the least squares estimate of a random variable is its mean.

When this is done, the total variance ofY can be divided into two parts: the variance in
f (X) due to variation inX, and the remainder, the variance off (X)−Y. We can say that the
first component is the part of the variance ofY which is explained by variation inX. This is a
technical mathematical meaning of the word “explain” whichbears little relation to its everyday
use. This calculation can be made regardless of the meaning of X andY. To draw a line through
a set of points does not in itself constitute an explanation of anything.

The total variance ofY, assumingY to have mean 0, is
R

x

R

y y2P(x,y). The division into two
components is constructed thus:
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For the bivariate normal distribution,yx = bcx/a. Thereforef (X) = bcX/a is the function
which best estimatesY from X, and since it happens to be linear, it is also the best straight line.
The two components of the variance arec2b2c′2 andb2, their sum beingb2c′2. The proportion
of the variance due toX is c2, and the remaining proportion is 1−c2.

A.3 Mutual information

For a joint normal distribution we shall compute the entropyHX of X given no information about
Y, and the entropyHX|Y of X givenY, where the entropyH(P) of a probability distributionP
is the integral of−PlogP over the whole space. This enables us to calculateIX|Y = HX −HX|Y,
the information given aboutX by knowing the value ofY. (Note that this quantity is actually
symmetrical inX andY: it is also the information given aboutY by knowing the value ofX.
This is true for all distributions.)

THEOREM A.3 The entropy of a one-dimensional normal distribution with standard deviation
a is log(a

√
2π)−1.

PROOF. Let P(x) = 1
a
√

2π
exp(x2/2a2).
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a
√
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Z
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2a2 + log(a
√

2π))

= log(a
√

2π)− 1
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Z
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2a2 exp(
x2
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= log(a
√

2π)−1

2

THEOREM A.4 HX = log(ac′
√

2π)−1. HX|Y = log(a
√

2π)−1.

PROOF. Immediate from Theorems A.1(parts 2 and 3) and A.3. 2

THEOREM A.5 Themutual informationIX|Y given about X by knowing the value of Y islogc′.

PROOF. By definition,IX|Y = HX −HX|Y. The result follows from the preceding theorem.2

A.4 Sign estimation

Without loss of generality, we assume thatX andY are normalised to have standard deviation
1. The proportion of errors in estimating the sign ofY from the sign ofX is the measure of
the upper right and lower left quadrants of an elliptical contour line of the distribution, as a
fraction of the area of the ellipse. The ratio of the lengths of the x = y andx = −y axes of the

ellipse is
√

1+c
1−c. Squeezing the plane along thex = y axis by this factor transforms the ellipse
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into a circle, and changes the angle between thex andy axes to 2θ, where tanθ =
√

1+c
1−c. The

proportion sought for is now the ratio of the transformed sectors to the area of the circle, which

is 2θ/π. The proportion of correct predictions for a correlation ofc is therefore2
π tan−1

√

1+c
1−c

= 1
π cos−1(−c).
Now consider the modified problem of estimating the sign ofY′−Y by the sign ofX′−X.

(x,y,x′,y′) is distributed over a four-dimensional space according toP(X,Y,X′,Y′) = P(X,Y)
P(X′,Y′), whereP(X,Y) is the bivariate normal distribution. As before we takeP(X,Y) to be
normalised so that both arguments have mean 0, standard deviation 1, and correlationc. The
probability we require is the total measure of the four-dimensional subspace within whichx′−x
andy′− y have the same sign. Observe thatX andX′ are independently distributed, and that
P(x,y,x′,y′) is circularly symmetric about the planey= 0,y′ = 0. The same is true ofY, Y′, and
the planex = 0, x′ = 0. ThereforeP(x,y,x′,y′) remains invariant under any four-dimensional
rotation about these two planes. Consider a rotation ofπ/4 about each plane. That is, we change
to coordinates(x1,y1,x′1,y

′
1) such that:

x1 = (x′ +x)/
√

2

x′1 = (x′−x)/
√

2

y1 = (y′ +y)/
√

2

y′1 = (y′−y)/
√

2

Then the measure we require is of that part of the space wherex′1 andy′1 have the same sign.
SinceP(x,y,x′,y′) = P(x1,y1,x′1,y

′
1) = P(x1,y1)P(x′1,y

′
1), this is equal to the measure of that

part of the distributionP(X,Y) whereX andY have the same sign. This is exactly what we
calculated earlier. Therefore a correlation ofc implies that the proportion of correct predictions
is 1

π cos−1(−c).

A.5 Screening tests

The distribution ofY, givenX = x, is normal with standard deviation 1 and meancx. Whenx
is positive, the probability thatY is negative is 1−Φ−1(cx). For this to be at mostε, x must
be at leastδ = 1

cΦ−1(1− ε). A similar analysis applies for negativex. Since the unconditional
standard deviation ofx is c′, the probabilityS(c,ε) that the magnitude ofx is at least this great
is 2(1−Φ(δ/c′)).

For the modified screening test problem (estimating the signof Y′−Y by the sign ofX′−X
when |X′ −X| > δ), we apply the same four-dimensional rotation as for the modified sign
estimation problem. This reduces it to the basic screening test problem.

The number of atoms in 2.5 tons of water is 2.5× 106 grams× 3 atoms per molecule
×2.5×106 molecules per mole/ 20 grams per mole of water = 2.25×1029.

A.6 Correlations and regression lines for non-random subpopulations

For the relation between population correlationc, subpopulation correlationc1, and relative
subpopulation sizeκ, we must find the largest ellipse associated with a correlation ofc1 which
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is contained in one of correlationc. This is an ellipse, one axis of which coincides with the
minor axis of the larger ellipse. The ratio of areas of the ellipses is the ratio of their other axes.

From the preceding formula it follows that this ratio isκ =
√

(1−c)(1+c1)
(1+c)(1−c1)

. Givenc andκ, define

d = κ2 1+c
1−c. Thenc1 = d−1

d+1. This is the formula tabulated in Table 5.
We can similarly derive a lower bound for the maximum possible subpopulation correlation

(not tabulated in the main paper): this is1−d′
1+d′ whered′ = κ2 1−c

1+c.
An example such as is described at the end of the section on subpopulations consists of a

subpopulation, bivariately normally distributed with means 0, unconditional standard deviations
1, and correlationc, and a population which adds a single point at(A,B), for someA andB.
ChoosingA large enough andB= ±A gives a population correlation arbitrarily close to±1. By
the mean value theorem, there are other choices ofA andB yielding any correlation between
those limits.

A.7 Causation and correlation

THEOREM A.6 Let x be a differentiable function of time, such that:

1. x andẋ are bounded.

2. The mean value of x exists (i.e. limt1,t2→∞
1

t1+t2

R t2
−t1

xdt exists).

3. The standard deviations of x andẋ exist and are positive.

Then the correlation of x anḋx is zero.

PROOF. If we subtract the mean ofx from x we can without loss of generality take it to be zero.
The mean of ˙x is the limit of 1

t1+t2

R t2
−t1

ẋdt = 1
t1+t2

(x(t2)−x(t1))dt, which is zero becausex is
bounded.

The covariance ofx andẋ is therefore

limt1,t2→∞
1

t1 + t2

Z t2

−t1
xẋdt

= limt1,t2→∞
1

t1 + t2
(x(t2)

2−x(t1)
2)/2

= 0

becausex is bounded. Since the standard deviations ofx and ẋ are positive, their correlation
coefficient is also zero.

Provided thatx remains bounded, the conditions of the theorem can be considerably relaxed,
but the proof becomes more complex.
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